LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A possible candidate for triply degenerate point fermions in trigonal layered PtBi2

Photo by ericmuhr from unsplash

Triply degenerate point (TP) fermions in tungsten–carbide-type materials (e.g., MoP), which represent new topological states of quantum matter, have generated immense interest recently. However, the TPs in these materials are… Click to show full abstract

Triply degenerate point (TP) fermions in tungsten–carbide-type materials (e.g., MoP), which represent new topological states of quantum matter, have generated immense interest recently. However, the TPs in these materials are found to be far below the Fermi level, leading to the TP fermions having less contribution to low-energy quasiparticle excitations. Here, we theoretically predict the existence of TP fermions with TP points close to the Fermi level in trigonal layered PtBi2 by ab initio calculations, and experimentally verify the predicted band topology by magnetotransport measurements under high magnetic fields up to 40 T. Analyses of both the pronounced Shubnikov–de Haas and de Haas–van Alphen oscillations reveal the existence of six principal Fermi pockets. Our experimental results, together with those from ab initio calculations, reveal the interplay between transport behaviors and unique electronic structures, and support the existence of TP fermions in trigonal layered PtBi2.Triply degenerate point (TP) fermions have been reported in MoP but the TPs are far below the Fermi level. Here, Guo et al. predict and verify the possible existence of TP fermions in trigonal layered PtBi2, where the TP points are close to the Fermi level.

Keywords: trigonal layered; layered ptbi2; triply degenerate; degenerate point; fermions trigonal; point fermions

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.