LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity

Photo from wikipedia

Vesicle-mediated nucleocytoplasmic transport is a nuclear pore-independent mechanism for the nuclear export of macromolecular complexes, but the molecular basis for this transport remains largely unknown. Here we show that endosomal… Click to show full abstract

Vesicle-mediated nucleocytoplasmic transport is a nuclear pore-independent mechanism for the nuclear export of macromolecular complexes, but the molecular basis for this transport remains largely unknown. Here we show that endosomal sorting complex required for transport-III (ESCRT-III) is recruited to the inner nuclear membrane (INM) during the nuclear export of herpes simplex virus 1 (HSV-1). Scission during HSV-1 budding through the INM is prevented by depletion of ESCRT-III proteins. Interestingly, in uninfected human cells, the depletion of ESCRT-III proteins induces aberrant INM proliferation. Our results show that HSV-1 expropriates the ESCRT-III machinery in infected cells for scission of the INM to produce vesicles containing progeny virus nucleocapsids. In uninfected cells, ESCRT-III regulates INM integrity by downregulating excess INM.The endosomal sorting complex required for transport-III (ESCRT-III) has been implicated in the packaging of HIV and HSV-1 viruses in the cytoplasm. Here the authors show that ESCRT-III proteins are required for the transport of HSV-1 nucleocapsids from nucleoplasm to cytosol through the nuclear envelope and confirm that the same mechanism is also used for the nucleocytoplasmic transport of RNP in Drosophila cells.

Keywords: escrt iii; iii; nuclear membrane; transport; inner nuclear

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.