LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation

Photo from wikipedia

The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex… Click to show full abstract

The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex susceptibility become invalid. Here we report a methodology to measure the complex optical susceptibility of individual 1D materials by an elliptical-polarization-based optical homodyne detection. This method is based on the accurate manipulation of interference between incident left- (right-) handed elliptically polarized light and the scattering light, which results in the opposite (same) contribution of the real and imaginary susceptibility in two sets of spectra. We successfully demonstrate its application in determining complex susceptibility of individual chirality-defined carbon nanotubes in a broad optical spectral range (1.6–2.7 eV) and under different environments (suspended and in device). This full characterization of the complex optical responses should accelerate applications of various 1D nanomaterials in future photonic, optoelectronic, photovoltaic, and bio-imaging devices.One-dimensional materials such as carbon nanotubes have many applications, but not all of their properties can be described in the same way as for conventional media. Here, the authors devise a method to measure the complex optical susceptibility in a 1D nanomaterial and demonstrate it for carbon nanotubes.

Keywords: susceptibility; carbon nanotubes; complex optical; optical susceptibility; susceptibility individual

Journal Title: Nature Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.