Precision gravimetry is key to a number of scientific and industrial applications, including climate change research, space exploration, geological surveys and fundamental investigations into the nature of gravity. A variety of… Click to show full abstract
Precision gravimetry is key to a number of scientific and industrial applications, including climate change research, space exploration, geological surveys and fundamental investigations into the nature of gravity. A variety of quantum systems, such as atom interferometry and on-chip-Bose–Einstein condensates have thus far been investigated to this aim. Here, we propose a new method which involves using a quantum optomechanical system for measurements of gravitational acceleration. As a proof-of-concept, we investigate the fundamental sensitivity for gravitational accelerometry of a cavity optomechanical system with a trilinear radiation pressure light-matter interaction. The phase of the optical output encodes the gravitational acceleration g and is the only component which needs to be measured. We prove analytically that homodyne detection is the optimal readout method and we predict an ideal fundamental sensitivity of Δg = 10−15 ms−2 for state-of-the-art parameters of optomechanical systems, showing that they could, in principle, surpass the best atomic interferometers even for low optical intensities. Further, we show that the scheme is strikingly robust to the initial thermal state of the oscillator.Precise gravimetric measurements are an important but challenging task. Here, Qvarfort et al. theoretically show that, in an optomechanical cavity, only the phase of the optical output needs to be measured to obtain a precise value for the gravitational acceleration with high sensitivity.
               
Click one of the above tabs to view related content.