The efficiency of deep-ocean CO2 sequestration is regulated by the relative balance between inorganic and organic carbon export respectively acting through the biological carbon pump (BCP) and the carbonate counter… Click to show full abstract
The efficiency of deep-ocean CO2 sequestration is regulated by the relative balance between inorganic and organic carbon export respectively acting through the biological carbon pump (BCP) and the carbonate counter pump (CCP). The composition and abundance of calcifying species in the prevailing oceanic plankton community plays a major role in driving the CCP. Here we assess the role of these calcifying organisms in regulating the strength of the CCP in a Southern Ocean region (northern Scotia Sea) known to be a major hotspot for the drawdown of atmospheric CO2. We show that, when shelled pteropods dominate the calcifying community, the total annual reduction of CO2 transferred to the deep ocean doubles (17%) compared to when other plankton calcifiers dominate (3–9%). Furthermore, predation enhances their contribution through the removal of organic soft tissue. Pteropods are threatened in polar regions by ocean warming and acidification. We determine that their potential decline would have major implications to the comparative strengths of the BCP and CCP.The Scotia Sea, located in the Southern Ocean, is a major hotspot for the drawdown of atmospheric CO2. Here, the authors show that the strength of the carbonate counter pump doubles when shelled pteropods dominate the plankton calcifier community, counteracting the amount of CO2 transferred to the deep ocean.
               
Click one of the above tabs to view related content.