LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum mechanics and the covariance of physical laws in quantum reference frames

Photo by heftiba from unsplash

In physics, every observation is made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in all practical situations it is… Click to show full abstract

In physics, every observation is made with respect to a frame of reference. Although reference frames are usually not considered as degrees of freedom, in all practical situations it is a physical system which constitutes a reference frame. Can a quantum system be considered as a reference frame and, if so, which description would it give of the world? Here, we introduce a general method to quantise reference frame transformations, which generalises the usual reference frame transformation to a “superposition of coordinate transformations”. We describe states, measurement, and dynamical evolution in different quantum reference frames, without appealing to an external, absolute reference frame, and find that entanglement and superposition are frame-dependent features. The transformation also leads to a generalisation of the notion of covariance of dynamical physical laws, to an extension of the weak equivalence principle, and to the possibility of defining the rest frame of a quantum system.Reference frames are ultimately physical systems, and thus it should be possible to quantise them in a consistent way. Here, the authors use a relational formalism to quantise a reference frame and show the covariance of physical laws under transformations between such quantum reference frames.

Keywords: reference frames; quantum reference; frame; reference; reference frame; mechanics

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.