LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lithium promoted mesoporous manganese oxide catalyzed oxidation of allyl ethers

Photo from wikipedia

Herein we report the first example of the catalytic aerobic partial oxidation of allyl ether to its acrylate ester derivative. Many partial oxidations often need an expensive oxidant such as… Click to show full abstract

Herein we report the first example of the catalytic aerobic partial oxidation of allyl ether to its acrylate ester derivative. Many partial oxidations often need an expensive oxidant such as peroxides or other species to drive such reactions. In addition, selective generation of esters using porous catalysts has been elusive. This reaction is catalyzed by a Li ion promoted mesoporous manganese oxide (meso-Mn2O3) under mild conditions with no precious metals, a reusable heterogeneous catalyst, and easy isolation. This process is very attractive for the oxidation of allyl ethers. We report on the catalytic activity, selectivity, and scope of the reaction. In the best cases presented, almost complete conversion of allyl ether with near complete chemo-selectivity towards acrylate ester derivatives is observed. Based on results from controlled experiments, we propose a possible reaction mechanism for the case in which N-hydroxyphthalimide (NHPI) is used in combination with trichloroacetonitrile (CCl3CN).Acrylics and acrylates have become important building blocks for the chemical industry, but their efficient synthesis remains a challenge. Here, the authors report the first example of the catalytic aerobic partial oxidation of allyl ether to its acrylate ester derivative using a Li ion promoted mesoporous manganese oxide under mild conditions.

Keywords: oxidation; manganese oxide; mesoporous manganese; promoted mesoporous; allyl ethers; oxidation allyl

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.