LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping

Photo from wikipedia

Sulfurized polyacrylonitrile is suggested to contain Sn (n ≤ 4) and shows good electrochemical performance in carbonate electrolytes for lithium sulfur batteries. However inferior results in ether electrolytes suggest that high solubility… Click to show full abstract

Sulfurized polyacrylonitrile is suggested to contain Sn (n ≤ 4) and shows good electrochemical performance in carbonate electrolytes for lithium sulfur batteries. However inferior results in ether electrolytes suggest that high solubility of Li2Sn (n ≤ 4) trumps the limited redox conversion, leading to dissolution and shuttling. Here, we introduce a small amount of selenium in sulfurized polyacrylonitrile to accelerate the redox conversion, delivering excellent performance in both carbonate and ether electrolytes, including high reversible capacity (1300 mA h g−1 at 0.2 A g−1), 84% active material utilization and high rate (capacity up to 900 mA h g−1 at 10 A g−1). These cathodes can undergo 800 cycles with nearly 100% Coulombic efficiency and ultralow 0.029% capacity decay per cycle. Polysulfide dissolution is successfully suppressed by enhanced reaction kinetics. This work demonstrates an ether compatible sulfur cathode involving intermediate Li2Sn (n ≤ 4), attractive rate and cycling performance, and a promising solution towards applicable lithium-sulfur batteries.Lithium sulfur batteries are promising for advanced energy storage, but polysulfide shuttling limits performance lifetime. Here the authors report selenium-doping in a sulfur-based cathode to prevent dissolution of polysulfide intermediates, leading to ether compatibility, high capacity and stable cycling.

Keywords: sulfurized polyacrylonitrile; ether compatible; performance; selenium doping; excellent performance

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.