LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers

Photo from wikipedia

There is often a trade-off between mechanical properties (modulus and toughness) and dynamic self-healing. Here we report the design and synthesis of a polymer containing thermodynamically stable whilst kinetically labile… Click to show full abstract

There is often a trade-off between mechanical properties (modulus and toughness) and dynamic self-healing. Here we report the design and synthesis of a polymer containing thermodynamically stable whilst kinetically labile coordination complex to address this conundrum. The Zn-Hbimcp (Hbimcp = 2,6-bis((imino)methyl)-4-chlorophenol) coordination bond used in this work has a relatively large association constant (2.2 × 1011) but also undergoes fast and reversible intra- and inter-molecular ligand exchange processes. The as-prepared Zn(Hbimcp)2-PDMS polymer is highly stretchable (up to 2400% strain) with a high toughness of 29.3 MJ m−3, and can autonomously self-heal at room temperature. Control experiments showed that the optimal combination of its bond strength and bond dynamics is responsible for the material’s mechanical toughness and self-healing property. This molecular design concept points out a promising direction for the preparation of self-healing polymers with excellent mechanical properties. We further show this type of polymer can be potentially used as energy absorbing material.There is often a trade-off between mechanical properties (modulus and toughness) and dynamic self-healing in materials. Here the authors design and synthesize a polymer containing thermodynamically stable whilst kinetically labile coordination complexes to address this conundrum.

Keywords: coordination; whilst kinetically; self; self healing; stable whilst; thermodynamically stable

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.