LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours

Photo from wikipedia

Developing efficient bifunctional catalysts for overall water splitting that are earth-abundant, cost-effective, and durable is of considerable importance from the practical perspective to mitigate the issues associated with precious metal-based… Click to show full abstract

Developing efficient bifunctional catalysts for overall water splitting that are earth-abundant, cost-effective, and durable is of considerable importance from the practical perspective to mitigate the issues associated with precious metal-based catalysts. Herein, we introduce a heterostructure comprising perovskite oxides (La0.5Sr0.5CoO3–δ) and molybdenum diselenide (MoSe2) as an electrochemical catalyst for overall water electrolysis. Interestingly, formation of the heterostructure of La0.5Sr0.5CoO3–δ and MoSe2 induces a local phase transition in MoSe2, 2 H to 1 T phase, and more electrophilic La0.5Sr0.5CoO3–δ with partial oxidation of the Co cation owing to electron transfer from Co to Mo. Together with these synergistic effects, the electrochemical activities are significantly improved for both hydrogen and oxygen evolution reactions. In the overall water splitting operation, the heterostructure showed excellent stability at the high current density of 100 mA cm−2 over 1,000 h, which is exceptionally better than the stability of the state-of-the-art platinum and iridium oxide couple.While catalysts are necessary for H2 and O2 production from water, developing materials capable of evolving both under the same conditions has proven challenging. Here, authors prepare perovskite-oxide and molybdenum sulfide heterostructures as bifunctional water-splitting electrocatalysts.

Keywords: phase; 5sr0 5coo3; water; overall water; heterostructure; la0 5sr0

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.