LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides

Photo from wikipedia

Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability… Click to show full abstract

Single atom catalyst, which contains isolated metal atoms singly dispersed on supports, has great potential for achieving high activity and selectivity in hetero-catalysis and electrocatalysis. However, the activity and stability of single atoms and their interaction with support still remains a mystery. Here we show a stable single atomic ruthenium catalyst anchoring on the surface of cobalt iron layered double hydroxides, which possesses a strong electronic coupling between ruthenium and layered double hydroxides. With 0.45 wt.% ruthenium loading, the catalyst exhibits outstanding activity with overpotential 198 mV at the current density of 10 mA cm−2 and a small Tafel slope of 39 mV dec−1 for oxygen evolution reaction. By using operando X-ray absorption spectroscopy, it is disclosed that the isolated single atom ruthenium was kept under the oxidation states of 4+ even at high overpotential due to synergetic electron coupling, which endow exceptional electrocatalytic activity and stability simultaneously.While water splitting offers a carbon-neutral means to store energy, water oxidation is sluggish and corrosive over earth-abundant electrocatalysts. Here, authors show single ruthenium atoms over cobalt-iron layered double hydroxides to be effective and stable oxygen evolution electrocatalysts.

Keywords: ruthenium; layered double; oxygen evolution; iron layered; double hydroxides; cobalt iron

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.