LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions

Photo from wikipedia

Although isocyanide-based multicomponent reactions were proven to be simple, elegant and facile strategies for the synthesis of highly valuable nitrogen-containing heterocycles, their asymmetric versions accessing to optically active nitrogen heterocyclic… Click to show full abstract

Although isocyanide-based multicomponent reactions were proven to be simple, elegant and facile strategies for the synthesis of highly valuable nitrogen-containing heterocycles, their asymmetric versions accessing to optically active nitrogen heterocyclic compounds are rather limited. Here, we illustrate that, relying on the enantioselective addition of simple isocyanides to C=C bonds, several isocyanide-based multicomponent reactions are realized in the presence of a chiral MgII-N,Nʹ-dioxide catalyst. In the reaction among isocyanide, TMSN3, and alkylidene malonate, three- or four-component reactions could be precisely controlled by modulating reaction conditions, supplying two types of enantioenriched tetrazole-derivatives in moderate to high yields. Possible catalytic cycles via a key zwitterionic intermediate, and the vital roles of H2O or excess ligand are provided based on control experiments. Moreover, taking advantage of this zwitterionic intermediate as a 1,3-dipole, an enantioselective dearomative [3+2] annulation reaction of nonactivated isoquinolines is achieved, furnishing chiral 1,2-dihydroisoquinolines in good to excellent results.Asymmetric isocyanide-based multicomponent reactions are elegant, yet challenging, strategies to access valuable N-heterocycles. Here, the authors employ a chiral Mg(II) -N,N′-dioxide catalyst in three- or four-component reactions to obtain chiral tetrazoles and devise a dearomative [3+2] annulation reaction of isoquinolines.

Keywords: multicomponent reactions; synthesis tetrazole; reaction; asymmetric synthesis; isocyanide based; based multicomponent

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.