Only a few of the vast range of potential two-dimensional materials (2D) have been isolated or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating naturally occurring bulk… Click to show full abstract
Only a few of the vast range of potential two-dimensional materials (2D) have been isolated or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating naturally occurring bulk crystals to produce atomically thin layers, after which a material-specific vapour synthesis method must be developed to grow interesting candidates in a scalable manner. Here we show a general approach for synthesising thin layers of two-dimensional binary compounds. We apply the method to obtain high quality, epitaxial MoS2 films, and extend the principle to the synthesis of a wide range of other materials—both well-known and never-before isolated—including transition metal sulphides, selenides, tellurides, and nitrides. This approach greatly simplifies the synthesis of currently known materials, and provides a general framework for synthesising both predicted and unexpected new 2D compounds.The scalable synthesis of 2D materials critically relies on finding appropriate vapour-phase metal precursors and careful fine-tuning of growth parameters. Here, the authors instead use solid elemental precursors and a single recipe to demonstrate a general approach for synthesising thin epitaxial layers of 20 different 2D binary compounds, including transition metal sulphides, selenides, tellurides, and nitrides.
               
Click one of the above tabs to view related content.