Molecular machines carry out their function by equilibrium mechanical motions in environments that are far from thermodynamic equilibrium. The mechanically equilibrated character of the trajectories of the macromolecule has allowed… Click to show full abstract
Molecular machines carry out their function by equilibrium mechanical motions in environments that are far from thermodynamic equilibrium. The mechanically equilibrated character of the trajectories of the macromolecule has allowed development of a powerful theoretical description, reminiscent of Onsager’s trajectory thermodynamics, that is based on the principle of microscopic reversibility. Unlike the situation at thermodynamic equilibrium, kinetic parameters play a dominant role in determining steady-state concentrations away from thermodynamic equilibrium, and kinetic asymmetry provides a mechanism by which chemical free-energy released by catalysis can drive directed motion, molecular adaptation, and self-assembly. Several examples drawn from the recent literature, including a catenane-based chemically driven molecular rotor and a synthetic molecular assembler or pump, are discussed. The mechanism by which macromolecular catalysts use energy from exergonic reactions to move, adapt, and assemble has been unclear. In this Perspective article, R. Dean Astumian shows that in addition to disequilibrium of the catalyzed reaction, kinetic asymmetry is the essential feature required to drive non-equilibrium response by an information ratchet mechanism.
               
Click one of the above tabs to view related content.