Assessing atomic defect states and their ramifications on the electronic properties of two-dimensional van der Waals semiconducting transition metal dichalcogenides (SC-TMDs) is the primary task to expedite multi-disciplinary efforts in… Click to show full abstract
Assessing atomic defect states and their ramifications on the electronic properties of two-dimensional van der Waals semiconducting transition metal dichalcogenides (SC-TMDs) is the primary task to expedite multi-disciplinary efforts in the promotion of next-generation electrical and optical device applications utilizing these low-dimensional materials. Here, with electron tunneling and optical spectroscopy measurements with density functional theory, we spectroscopically locate the mid-gap states from chalcogen-atom vacancies in four representative monolayer SC-TMDs—WS2, MoS2, WSe2, and MoSe2—, and carefully analyze the similarities and dissimilarities of the atomic defects in four distinctive materials regarding the physical origins of the missing chalcogen atoms and the implications to SC-mTMD properties. In addition, we address both quasiparticle and optical energy gaps of the SC-mTMD films and find out many-body interactions significantly enlarge the quasiparticle energy gaps and excitonic binding energies, when the semiconducting monolayers are encapsulated by non-interacting hexagonal boron nitride layers. Atomic defects impact the electronic properties of atomically thin transition metal dichalcogenides (TMDs). Here, the authors locate the mid-gap states originating from single chalcogen-atom vacancies in four representative semiconducting monolayer films, and analyse their implications for the semiconducting properties of atomically thin TMDs through electron tunneling and optical spectroscopy measurements.
               
Click one of the above tabs to view related content.