LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular basis for chirality-regulated Aβ self-assembly and receptor recognition revealed by ion mobility-mass spectrometry

Photo from wikipedia

Despite extensive efforts on probing the mechanism of Alzheimer’s disease (AD) and enormous investments into AD drug development, the lack of effective disease-modifying therapeutics and the complexity of the AD… Click to show full abstract

Despite extensive efforts on probing the mechanism of Alzheimer’s disease (AD) and enormous investments into AD drug development, the lack of effective disease-modifying therapeutics and the complexity of the AD pathogenesis process suggest a great need for further insights into alternative AD drug targets. Herein, we focus on the chiral effects of truncated amyloid beta (Aβ) and offer further structural and molecular evidence for epitope region-specific, chirality-regulated Aβ fragment self-assembly and its potential impact on receptor-recognition. A multidimensional ion mobility-mass spectrometry (IM-MS) analytical platform and in-solution kinetics analysis reveal the comprehensive structural and molecular basis for differential Aβ fragment chiral chemistry, including the differential and cooperative roles of chiral Aβ N-terminal and C-terminal fragments in receptor recognition. Our method is applicable to many other systems and the results may shed light on the potential development of novel AD therapeutic strategies based on targeting the D-isomerized Aβ, rather than natural L-Aβ. Chiral inversion of amino acids is thought to modulate the structure and function of amyloid beta (Aβ) but these processes are poorly understood. Here, the authors develop an ion mobility-mass spectrometry based approach to study chirality-regulated structural features of Aβ fragments and their influence on receptor recognition.

Keywords: mass spectrometry; chirality regulated; mobility mass; recognition; receptor recognition; ion mobility

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.