Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that… Click to show full abstract
Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that Nestin-knockdown cells were more sensitive to oxidative stress in non-small cell lung cancer (NSCLC). However, the molecular mechanism by which Nestin protects cells from oxidative damage remains unclear. Here, we identify a feedback loop between Nestin and Nrf2 maintaining the redox homeostasis. Mechanistically, the ESGE motif of Nestin interacts with the Kelch domain of Keap1 and competes with Nrf2 for Keap1 binding, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant enzyme generation. Interestingly, we also map that the antioxidant response elements (AREs) in the Nestin promoter are responsible for its induction via Nrf2. Taken together, our results indicate that the Nestin–Keap1–Nrf2 axis regulates cellular redox homeostasis and confers oxidative stress resistance in NSCLC. Loss of Nestin sensitizes non-small cell lung carcinoma (NSCLC) to oxidative stress. Here, the authors report a feedback loop between Nestin and Nrf2 wherein Nestin competes with Nrf2 for Keap1 binding, preventing Nrf2 degradation, and show the Nestin–Keap1–Nrf2 axis to regulate redox homeostasis in NSCLC.
               
Click one of the above tabs to view related content.