LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nestin regulates cellular redox homeostasis in lung cancer through the Keap1–Nrf2 feedback loop

Photo by apchf from unsplash

Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that… Click to show full abstract

Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that Nestin-knockdown cells were more sensitive to oxidative stress in non-small cell lung cancer (NSCLC). However, the molecular mechanism by which Nestin protects cells from oxidative damage remains unclear. Here, we identify a feedback loop between Nestin and Nrf2 maintaining the redox homeostasis. Mechanistically, the ESGE motif of Nestin interacts with the Kelch domain of Keap1 and competes with Nrf2 for Keap1 binding, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant enzyme generation. Interestingly, we also map that the antioxidant response elements (AREs) in the Nestin promoter are responsible for its induction via Nrf2. Taken together, our results indicate that the Nestin–Keap1–Nrf2 axis regulates cellular redox homeostasis and confers oxidative stress resistance in NSCLC. Loss of Nestin sensitizes non-small cell lung carcinoma (NSCLC) to oxidative stress. Here, the authors report a feedback loop between Nestin and Nrf2 wherein Nestin competes with Nrf2 for Keap1 binding, preventing Nrf2 degradation, and show the Nestin–Keap1–Nrf2 axis to regulate redox homeostasis in NSCLC.

Keywords: nestin; redox homeostasis; feedback loop; cancer; keap1

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.