LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous multi-signal quantification for highly precise serodiagnosis utilizing a rationally constructed platform

Photo by sashbo70 from unsplash

Serodiagnosis with a single quantification method suffers from high false positive/negative rates. In this study, a three-channel platform with an accessional instrumented system was constructed for simultaneous electrochemical, luminescent, and… Click to show full abstract

Serodiagnosis with a single quantification method suffers from high false positive/negative rates. In this study, a three-channel platform with an accessional instrumented system was constructed for simultaneous electrochemical, luminescent, and photothermal quantification of H2S, a bio-indicator for acute pancreatitis (AP) diagnosis. Utilizing the specific reaction between platform and H2S, the three-channel platform showed high sensitivity and selectivity in the biological H2S concentration range. The three-channel platform was also feasible for identifying the difference in the plasma H2S concentrations of AP and normal mice. More importantly, the precision of AP serodiagnosis was significantly improved (>99.0%) using the three-signal method based on the three-channel platform and an optimized threshold, which was clearly higher than that of the single- or two-signal methods (79.5%–94.1%). Our study highlights the importance of constructing a multichannel platform for the simultaneous multi-signal quantification of bio-indicators, and provides rigorous ways to improve the precision of medical serodiagnosis. Single channel detection methods often suffer from false positives when analysing biological samples. Here, the authors report on the development of a three-channel detection device for measuring hydrogen sulphide in serum and demonstrate application in an in vivo model.

Keywords: three channel; channel platform; simultaneous multi; serodiagnosis; quantification

Journal Title: Nature Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.