The ability to detect low numbers of microbial cells in food and clinical samples is highly valuable but remains a challenge. Here we present a detection system (called ‘APC-Cas’) that… Click to show full abstract
The ability to detect low numbers of microbial cells in food and clinical samples is highly valuable but remains a challenge. Here we present a detection system (called ‘APC-Cas’) that can detect very low numbers of a bacterial pathogen without isolation, using a three-stage amplification to generate powerful fluorescence signals. APC-Cas involves a combination of nucleic acid-based allosteric probes and CRISPR-Cas13a components. It can selectively and sensitively quantify Salmonella Enteritidis cells (from 1 to 10 5 CFU) in various types of samples such as milk, showing similar or higher sensitivity and accuracy compared with conventional real-time PCR. Furthermore, APC-Cas can identify low numbers of S . Enteritidis cells in mouse serum, distinguishing mice with early- and late-stage infection from uninfected mice. Our method may have potential clinical applications for early diagnosis of pathogens. The detection of pathogens in food and clinical samples remains a challenge. Here, Shen et al. present a detection system, involving a combination of nucleic acid-based allosteric probes and CRISPR-Cas13a components, that can detect very low numbers of a bacterial pathogen in milk and serum samples without isolation.
               
Click one of the above tabs to view related content.