LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide

Photo from wikipedia

Encapsulation strategies are widely used for alleviating dissolution and diffusion of polysulfides, but they experience nonrecoverable structural failure arising from the repetitive severe volume change during lithium−sulfur battery cycling. Here… Click to show full abstract

Encapsulation strategies are widely used for alleviating dissolution and diffusion of polysulfides, but they experience nonrecoverable structural failure arising from the repetitive severe volume change during lithium−sulfur battery cycling. Here we report a methodology to construct an electrochemically recoverable protective layer of polysulfides using an electrolyte additive. The additive nitrogen-doped carbon dots maintain their “dissolved” status in the electrolyte at the full charge state, and some of them function as active sites for lithium sulfide growth at the full discharge state. When polysulfides are present amid the transition between sulfur and lithium sulfide, nitrogen-doped carbon dots become highly reactive with polysulfides to form a solid and recoverable polysulfide-encapsulating layer. This design skilfully avoids structural failure and efficiently suppresses polysulfide shuttling. The sulfur cathode delivers a high reversible capacity of 891 mAh g −1 at 0.5 C with 99.5% coulombic efficiency and cycling stability up to 1000 cycles at 2 C. Inspired by the processes of thrombus formation and thrombolysis in blood vessels, the authors here construct an electrochemically recoverable protective layer of polysulfides using an electrolyte additive, realizing high performance Li–S batteries.

Keywords: transition sulfur; lithium sulfide; lithium; sulfur lithium; encapsulation

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.