LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stepwise internal potential jumps caused by multiple-domain polarization flips in metal/ferroelectric/metal/paraelectric/metal stack

Photo from wikipedia

Negative capacitance (NC) effects in ferroelectric/paraelectric (FE/PE) stacks have been recently discussed intensively in terms of the steep subthreshold swing (SS) in field-effect transistors (FETs). It is, however, still disputable… Click to show full abstract

Negative capacitance (NC) effects in ferroelectric/paraelectric (FE/PE) stacks have been recently discussed intensively in terms of the steep subthreshold swing (SS) in field-effect transistors (FETs). It is, however, still disputable to stabilize quasi-static-NC effects. In this work, stepwise internal potential jumps in a metal/FE/metal/PE/metal system observed near the coercive voltage of the FE layer are reported through carefully designed DC measurements. The relationship of the internal potential jumps with the steep SS in FETs is also experimentally confirmed by connecting a FE capacitor to a simple metal-oxide-semiconductor FET. On the basis of the experimental results, the observed internal potential jumps are analytically modelled from the viewpoint of bound charge emission associated with each domain flip in a multiple-domain FE layer in a FE/PE stack. This view is different from the original NC concept and should be employed for characterizing FE/PE gate stack FETs. Negative capacitance (NC) effects that could allow steep subthreshold swing (SS) in field-effect transistors (FETs) are still controversially discussed. Here the authors propose a model distinct from the NC concept, taking into account domain flips in multiple-domain ferroelectric/paraelectric gate stack FETs.

Keywords: stack; metal; internal potential; multiple domain; potential jumps

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.