LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of sulfur on sound velocity of liquid iron under Martian core conditions

Photo from wikipedia

Sulfur has been considered to be a predominant light element in the Martian core, and thus the sound velocity of Fe-S alloys at relevant high pressure and temperature is of… Click to show full abstract

Sulfur has been considered to be a predominant light element in the Martian core, and thus the sound velocity of Fe-S alloys at relevant high pressure and temperature is of great importance to interpret its seismological data. Here we measured the compressional sound velocity ( V P ) of liquid Fe, Fe 80 S 20 and Fe 57 S 43 using ultrasonic pulse-echo overlap method combined with a Kawai-type multi-anvil apparatus up to 20 GPa, likely corresponding to the condition at the uppermost core of Mars. The results demonstrate that the V P of liquid iron is least sensitive to its sulfur concentration in the Mars’ whole core pressure range. The comparison of seismic wave speeds of Fe-S liquids with future observations will therefore tell whether the Martian core is molten and contains impurity elements other than sulfur. Applying high-pressure and -temperature experiments, the authors here measure sound velocities in various liquid Fe-S alloys under conditions expected for the upper Martian core. The results together with future InSight mission data will help to understand whether the Martian core is molten Fe-S.

Keywords: martian core; velocity liquid; liquid iron; sound velocity; core

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.