Thermal detectors are a cornerstone of infrared and terahertz technology due to their broad spectral range. These detectors call for efficient absorbers with a broad spectral response and minimal thermal… Click to show full abstract
Thermal detectors are a cornerstone of infrared and terahertz technology due to their broad spectral range. These detectors call for efficient absorbers with a broad spectral response and minimal thermal mass. A common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, one can achieve a wavelength-independent absorptivity of up to 50%. However, existing absorber films typically require a thickness of the order of tens of nanometers, which can significantly deteriorate the response of a thermal transducer. Here, we present the application of ultrathin gold (2 nm) on top of a surfactant layer of oxidized copper as an effective infrared absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3)%, ranging from 2 μm to 20 μm, can be obtained. The presented absorber allows for a significant improvement of infrared/terahertz technologies in general and thermal detectors in particular. Long-term stability and broad spectral response are highly desired features of absorbers. Here, the authors report impedance matched absorbers based on 2 nm thick gold layer operating within the mid-infrared range from 2 to 20 μm, enabling stable long term absorptivity of 47(3) % which is mostly wavelength independent.
               
Click one of the above tabs to view related content.