LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrathin high-κ antimony oxide single crystals

Photo from wikipedia

Ultrathin oxides have been reported to possess excellent properties in electronic, magnetic, optical, and catalytic fields. However, the current and primary approaches toward the preparation of ultrathin oxides are only… Click to show full abstract

Ultrathin oxides have been reported to possess excellent properties in electronic, magnetic, optical, and catalytic fields. However, the current and primary approaches toward the preparation of ultrathin oxides are only applicable to amorphous or polycrystalline oxide nanosheets or films. Here, we successfully synthesize high-quality ultrathin antimony oxide single crystals via a substrate-buffer-controlled chemical vapor deposition strategy. The as-obtained ultrathin antimony oxide single crystals exhibit high dielectric constant (~100) and large breakdown voltage (~5.7 GV m−1). Such a strategy can also be utilized to fabricate other ultrathin oxides, opening up an avenue in broadening the applicaitons of ultrathin oxides in many emerging fields. The ultrathin oxide nanosheets obtained through previous approaches usually exhibit amorphism or polycrystallinity, which limit their properties towards electronic devices. Here, the authors synthesize ultrathin antimony oxide single crystals with high dielectric constant (~100) and large breakdown voltage (~5.7 GV m−1).

Keywords: ultrathin oxides; oxide single; single crystals; antimony oxide; ultrathin antimony

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.