We show a parity-time (PT) symmetric microwave photonic system in the optical wavelength space within a single spatial resonator, in which the gain and loss modes can perfectly overlay spatially… Click to show full abstract
We show a parity-time (PT) symmetric microwave photonic system in the optical wavelength space within a single spatial resonator, in which the gain and loss modes can perfectly overlay spatially but are distinguishable in the designated parameter space. To prove the concept, a PT-symmetric optoelectronic oscillator (OEO) in the optical wavelength space is implemented. The OEO has a single-loop architecture, with the microwave gain and loss modes carried by two optical wavelengths to form two mutually coupled wavelength-space resonators. The operation of PT symmetry in the OEO is verified by the generation of a 10-GHz microwave signal with a low phase noise of −129.3 dBc/Hz at 10-kHz offset frequency and small sidemodes of less than −66.22 dBc/Hz. Compared with a conventional spatial PT-symmetric system, a PT-symmetric system in the wavelength space features a much simpler configuration, better stability and greater resilience to environmental interferences. Most conventional PT-symmetric systems contain two physically separated modes. Here the authors proposed a PT-symmetric microwave optoelectronic oscillator, where the gain and loss modes are confined in a single spatial resonator, resulting in an increased structural simplicity, and long-term stability.
               
Click one of the above tabs to view related content.