LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Devil's staircase transition of the electronic structures in CeSb

Photo by timothycdykes from unsplash

Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil’s staircase is the most complex phenomenon, and for it, CeSb is… Click to show full abstract

Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil’s staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Néel temperature. An evolution of the low-energy electronic structure going through the devil’s staircase is of special interest, which has, however, been elusive so far despite 40 years of intense research. Here, we use bulk-sensitive angle-resolved photoemission spectroscopy and reveal the devil’s staircase transition of the electronic structures. The magnetic reconstruction dramatically alters the band dispersions at each transition. Moreover, we find that the well-defined band picture largely collapses around the Fermi energy under the long-periodic modulation of the transitional phase, while it recovers at the transition into the lowest-temperature ground state. Our data provide the first direct evidence for a significant reorganization of the electronic structures and spectral functions occurring during the devil’s staircase. CeSb undergoes a devil’s staircase sequence of extremely long-period modulations of the magnetically ordered 4f states. Here, the authors visualize how the devil’s staircase ordering impacts mobile electrons and collapses the well-defined band picture at the Fermi energy.

Keywords: electronic structures; devil staircase; transition electronic; staircase transition; staircase

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.