LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental exchange of grins between quantum Cheshire cats

Photo by jrkorpa from unsplash

Intuition suggests that an object should carry all of its physical properties. However, a quantum object may not act in such a manner—it can temporarily leave some of its physical… Click to show full abstract

Intuition suggests that an object should carry all of its physical properties. However, a quantum object may not act in such a manner—it can temporarily leave some of its physical properties where it never appears. This phenomenon is known as the quantum Cheshire cat effect. It has been proposed that a quantum object can even permanently discard a physical property and obtain a new one it did not initially have. Here, we observe this effect experimentally by casting non-unitary imaginary-time evolution on a photonic cluster state to extract weak values, which reveals the counterintuitive phenomenon that two photons exchange their spins without classically meeting each other. A phenomenon presenting only in the quantum realm, our results are in stark contrast with the perception of inseparability between objects and properties, and shed new light on comprehension of the ontology of observables. The quantum Cheshire cat effect has already highlighted how, in the quantum realm, a physical property can be temporarily detached from an object. Here, the authors go a step further, experimentally demonstrating how a particle's spin can be permanently separated and exchanged with that of another particle.

Keywords: cheshire; quantum cheshire; experimental exchange; grins quantum; exchange grins; cheshire cats

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.