LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chromosome drives via CRISPR-Cas9 in yeast

Photo from wikipedia

Self-propagating drive systems are capable of causing non-Mendelian inheritance. Here, we report a drive system in yeast referred to as a chromosome drive that eliminates the target chromosome via CRISPR-Cas9,… Click to show full abstract

Self-propagating drive systems are capable of causing non-Mendelian inheritance. Here, we report a drive system in yeast referred to as a chromosome drive that eliminates the target chromosome via CRISPR-Cas9, enabling the transmission of the desired chromosome. Our results show that the entire Saccharomyces cerevisiae chromosome can be eliminated efficiently through only one double-strand break around the centromere via CRISPR-Cas9. As a proof-of-concept experiment of this CRISPR-Cas9 chromosome drive system, the synthetic yeast chromosome X is completely eliminated, and the counterpart wild-type chromosome X harboring a green fluorescent protein gene or the components of a synthetic violacein pathway are duplicated by sexual reproduction. We also demonstrate the use of chromosome drive to preferentially transmit complex genetic traits in yeast. Chromosome drive enables entire chromosome elimination and biased inheritance on a chromosomal scale, facilitating genomic engineering and chromosome-scale genetic mapping, and extending applications of self-propagating drives.

Keywords: crispr cas9; chromosome drive; via crispr; chromosome

Journal Title: Nature Communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.