LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface-induced sign reversal of the anomalous Hall effect in magnetic topological insulator heterostructures

Photo by aginsbrook from unsplash

The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry… Click to show full abstract

The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial “topological Hall effect”-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications. Berry curvature connects to exotic electronic phases hence it provides important insights to understand quantum materials. Here, the authors report sign change of the anomalous Hall effect resulted from Berry curvature change at the interface of a topological insulator/magnetic topological insulator heterostructure.

Keywords: magnetic topological; anomalous hall; hall; hall effect; effect; berry curvature

Journal Title: Nature Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.