LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling

Photo from wikipedia

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it… Click to show full abstract

Strong light-matter coupling provides the means to challenge the traditional rules of chemistry. In particular, an energy inversion of singlet and triplet excited states would be fundamentally remarkable since it would violate the classical Hund’s rule. An organic chromophore possessing a lower singlet excited state can effectively harvest the dark triplet states, thus enabling 100% internal quantum efficiency in electrically pumped light-emitting diodes and lasers. Here we demonstrate unambiguously an inversion of singlet and triplet excited states of a prototype molecule by strong coupling to an optical cavity. The inversion not only implies that the polaritonic state lies at a lower energy, but also a direct energy pathway between the triplet and polaritonic states is opened. The intrinsic photophysics of reversed-intersystem crossing are thereby completely overturned from an endothermic process to an exothermic one. By doing so, we show that it is possible to break the limit of Hund’s rule and manipulate the energy flow in molecular systems by strong light-matter coupling. Our results will directly promote the development of organic light-emitting diodes based on reversed-intersystem crossing. Moreover, we anticipate that it provides the pathway to the creation of electrically pumped polaritonic lasers in organic systems.

Keywords: strong light; intersystem crossing; light matter; matter coupling

Journal Title: Nature Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.