LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a phenotype inheritance biomarker

Photo from wikipedia

The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results… Click to show full abstract

The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations. Here, we use genome-wide approaches to reveal genetic stability in the Mtrr model and genome-wide differential DNA methylation in the germline of Mtrr mutant maternal grandfathers. We observe that, while epigenetic reprogramming occurs, wildtype grandprogeny and great grandprogeny exhibit transcriptional changes that correlate with germline methylation defects. One region encompasses the Hira gene, which is misexpressed in embryos for at least three wildtype generations in a manner that distinguishes Hira transcript expression as a biomarker of maternal phenotypic inheritance.

Keywords: biomarker; inheritance; folate metabolism; defective folate; distinguishes hira

Journal Title: Nature Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.