The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from… Click to show full abstract
The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.
               
Click one of the above tabs to view related content.