Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence (RTP) and circularly polarized luminescence (CPL) is currently attracting great interest, but the development of multicolor-tunable CPOA in a single-component… Click to show full abstract
Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence (RTP) and circularly polarized luminescence (CPL) is currently attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains a formidable challenge. Here, we report an efficient strategy to achieve multicolor CPOA molecules through chiral clusterization by implanting chirality center into non-conjugated organic cluster. Owing to excitation-dependent emission of clusters, highly efficient and significantly tuned CPOA emissions from blue to yellowish-green with dissymmetry factor over 2.3 × 10 −3 and lifetime up to 587 ms are observed under different excitation wavelengths. With the distinguished color-tunable CPOA, the multicolor CPL displays and visual RTP detection of ultraviolent light wavelength are successfully constructed. These results not only provide a new paradigm for realization of multicolor-tunable CPOA materials in single-component molecular systems, but also offer new opportunities for expanding the applicability of CPL and RTP materials for diversified applications. Circularly polarized organic afterglow (CPOA) with both long-lived room-temperature phosphorescence and circularly polarized luminescence is attracting great interest, but the development of multicolor-tunable CPOA in a single-component material remains challenging. Here, the authors report a strategy to achieve multicolor CPOA through chiral clusterization by inserting a chirality center into a non-conjugated organic cluster.
               
Click one of the above tabs to view related content.