Polyolefins with branches produced by ethylene alone via chain walking are highly desired in industry. Selective branch formation from uncontrolled chain walking is a long-standing challenge to generate exclusively branched… Click to show full abstract
Polyolefins with branches produced by ethylene alone via chain walking are highly desired in industry. Selective branch formation from uncontrolled chain walking is a long-standing challenge to generate exclusively branched polyolefins, however. Here we report such desirable microstructures in ethylene polymerization by using sterically constrained α-diimine nickel(II)/palladium(II) catalysts at 30 °C–90 °C that fall into industrial conditions. Branched polyethylenes with exclusive branch pattern of methyl branches (99%) and notably selective branch distribution of 1,4-Me 2 unit (86%) can be generated. The ultrahigh degree of branching (>200 Me/1000 C) enables the well-defined product to mimic ethylene-propylene copolymers. More interestingly, branch distribution is predictable and computable by using a simple statistical model of p(1-p) n (p: the probability of branch formation). Mechanistic insights into the branch formation including branch pattern and branch distribution by an in-depth density functional theory (DFT) calculation are elucidated. Selective branch formation from uncontrolled chain walking is a longstanding challenge to generate exclusively branched polyolefins. Here the authors report such desirable microstructures in ethylene polymerization enabled by a nickel catalyst at 30 °C–90 °C that fall into industrial conditions and mimic ethylene-propylene copolymers.
               
Click one of the above tabs to view related content.