Sequential double hydrofunctionalizationalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2- N,Si compounds via ligand… Click to show full abstract
Sequential double hydrofunctionalizationalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2- N,Si compounds via ligand relay catalysis. A phenomenon of ligand relay is found that the tridentate anionic N -ligand (OPAQ) could capture the cobalt ion from bidentate neutral P -ligand (Xantphos) cobalt complex. This protocol uses three abundant chemical feedstocks, alkynes, silanes, and diazo compounds, and also features operationally simple, mild conditions, low catalyst loading (1 mol%), and excellent functional group tolerance. The 1,2- N,Si compounds can be easily further derivatized to afford various substituted silane derivatives via Si-H functionalization, alcohols via Fleming-Tamao oxidation, free amines and amides via N-N bond cleavage and protection. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee . The ligand relay has been supported by control experiments and absorption spectra. In organic chemistry, performing sequential catalytic cycles with a single catalyst improves efficiency. Here the authors present a methodology to functionalize alkynes with nitrogen and silicon atoms, through two catalytic cycles with a homogeneous cobalt catalyst, which is bound to different ligands in each cycle.
               
Click one of the above tabs to view related content.