LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Protein sequence design with a learned potential

Photo by edhoradic from unsplash

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here,… Click to show full abstract

The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design. Rational protein design to achieve a given protein backbone conformation is needed to engineer specific functions. Here Anand et al. describe a machine learning method using a learned neural network potential for fixed-backbone protein design.

Keywords: design; design learned; sequence design; protein; protein sequence

Journal Title: Nature Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.