LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Redesigning regulatory components of quorum-sensing system for diverse metabolic control.

Photo from wikipedia

Quorum sensing (QS) is a ubiquitous cell-cell communication mechanism that can be employed to autonomously and dynamically control metabolic fluxes. However, since the functions of genetic components in the circuits… Click to show full abstract

Quorum sensing (QS) is a ubiquitous cell-cell communication mechanism that can be employed to autonomously and dynamically control metabolic fluxes. However, since the functions of genetic components in the circuits are not fully understood, the developed QS circuits are still less sophisticated for regulating multiple sets of genes or operons in metabolic engineering applications. Here, we discover the regulatory roles of a CRP-binding site and the lux box to -10 region within luxR-luxI intergenic sequence in controlling the lux-type QS promoters. By varying the numbers of the CRP-binding site and redesigning the lux box to -10 site sequence, we create a library of QS variants that possess both high dynamic ranges and low leakiness. These circuits are successfully applied to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthetic pathways in Escherichia coli. This work expands the toolbox for dynamic control of multiple metabolic fluxes under complex metabolic background and presents paradigms to engineer metabolic pathways for high-level synthesis of target products.

Keywords: metabolic control; quorum sensing; control; diverse metabolic; redesigning regulatory; regulatory components

Journal Title: Nature communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.