LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging

Photo from wikipedia

Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the… Click to show full abstract

Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live Pseudomonas aeruginosa biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: in smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors.Biofilm structure: Shining a light on stiffnessA specialized microscopy technique can monitor biofilm stiffness in a non-destructive manner, yielding insights into biofilm structure and development. The technique, called Brillouin imaging, uses changes in the frequency of light interacting with a substance to reveal fine detail about the material’s mechanical properties. Peter Török and colleagues at Imperial College London, with co-workers in Singapore, used Brillouin imaging to study biofilms of Pseudomonas aeruginosa bacteria at different stages in their life cycle. In young colonies, stiffness increased towards the interior of the biofilm, while mature colonies had less stiff interiors. The older biofilms may therefore have hollow interiors or may have been moving towards a phase of bacterial dispersal from the biofilm state. This non-disruptive method to study mechanical variations within and between living biofilms may help efforts to combat biofilms in clinical, environmental and industrial situations.

Keywords: technique; pseudomonas aeruginosa; microscopy; brillouin imaging; biofilm; micromechanical properties

Journal Title: NPJ Biofilms and Microbiomes
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.