LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-supervised machine-learning classification of materials synthesis procedures

Photo from wikipedia

Digitizing large collections of scientific literature can enable new informatics approaches for scientific analysis and meta-analysis. However, most content in the scientific literature is locked-up in written natural language, which… Click to show full abstract

Digitizing large collections of scientific literature can enable new informatics approaches for scientific analysis and meta-analysis. However, most content in the scientific literature is locked-up in written natural language, which is difficult to parse into databases using explicitly hard-coded classification rules. In this work, we demonstrate a semi-supervised machine-learning method to classify inorganic materials synthesis procedures from written natural language. Without any human input, latent Dirichlet allocation can cluster keywords into topics corresponding to specific experimental materials synthesis steps, such as “grinding” and “heating”, “dissolving” and “centrifuging”, etc. Guided by a modest amount of annotation, a random forest classifier can then associate these steps with different categories of materials synthesis, such as solid-state or hydrothermal synthesis. Finally, we show that a Markov chain representation of the order of experimental steps accurately reconstructs a flowchart of possible synthesis procedures. Our machine-learning approach enables a scalable approach to unlock the large amount of inorganic materials synthesis information from the literature and to process it into a standardized, machine-readable database.

Keywords: synthesis procedures; machine learning; semi supervised; materials synthesis; synthesis

Journal Title: npj Computational Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.