LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable vertical ferroelectricity and domain walls by interlayer sliding in β-ZrI2

Photo by threeedil from unsplash

Vertical ferroelectricity where a net dipole moment appears as a result of in-plane ionic displacements has gained enormous attention following its discovery in transition metal dichalcogenides. Based on first-principles calculations,… Click to show full abstract

Vertical ferroelectricity where a net dipole moment appears as a result of in-plane ionic displacements has gained enormous attention following its discovery in transition metal dichalcogenides. Based on first-principles calculations, we report on the evidence of robust vertical ferroelectricity upon interlayer sliding in layered semiconducting β -ZrI 2 , a sister material of polar semimetals MoTe 2 and WTe 2 . The microscopic origin of ferroelectricity in ZrI 2 is attributed to asymmetric shifts of electronic charges within a trilayer, revealing a subtle interplay of rigid sliding displacements and charge redistribution down to ultrathin thicknesses. We further investigate the variety of ferroelectric domain boundaries and predict a stable charged domain wall with a quasi-two-dimensional electron gas and a high built-in electric field that can increase electron mobility and electromechanical response in multifunctional devices. Semiconducting behaviour and a small switching barrier of ZrI 2 hold promise for various ferroelectric applications, and our results provide important insights for further development of slidetronics ferroelectricity.

Keywords: tunable vertical; vertical ferroelectricity; ferroelectricity; ferroelectricity domain; interlayer sliding

Journal Title: npj Computational Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.