LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acceleration profiles and processing methods for parabolic flight

Photo from wikipedia

Parabolic flights provide cost-effective, time-limited access to “weightless” or reduced gravity conditions, facilitating research and validation activities that complement infrequent and costly access to space. Although parabolic flights have been… Click to show full abstract

Parabolic flights provide cost-effective, time-limited access to “weightless” or reduced gravity conditions, facilitating research and validation activities that complement infrequent and costly access to space. Although parabolic flights have been conducted for decades, reference acceleration profiles and processing methods are not widely available. Here we present a solution for collecting, analyzing, and classifying the altered gravity environments experienced during parabolic flights, which we validated during a Boeing 727-200F flight with 20 parabolas. All data and analysis code are freely available. Our solution can be integrated with diverse experimental designs, does not depend upon accelerometer orientation, and allows unsupervised classification of all phases of flight, providing a consistent and open-source approach to quantifying gravito-inertial accelerations (GIA), or g levels. As academic, governmental, and commercial use of space advances, data availability and validated processing methods will enable better planning, execution, and analysis of parabolic flight experiments, and thus facilitate future space activities.

Keywords: parabolic flight; flight; acceleration profiles; profiles processing; processing methods

Journal Title: NPJ Microgravity
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.