LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calculating energy derivatives for quantum chemistry on a quantum computer

Photo by karishea from unsplash

Modeling chemical reactions and complicated molecular systems has been proposed as the “killer application” of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential toward this… Click to show full abstract

Modeling chemical reactions and complicated molecular systems has been proposed as the “killer application” of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential toward this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within $$0.014$$0.014 Å of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H$${}_{2}$$2 molecule, finding agreement at the equilibrium bond length to within $$0.06$$0.06 a.u. ($$2 \%$$2% relative error).

Keywords: quantum; quantum computer; chemistry; geometry; energy derivatives

Journal Title: npj Quantum Information
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.