LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-accuracy Ising machine using Kerr-nonlinear parametric oscillators with local four-body interactions

Photo from wikipedia

A two-dimensional array of Kerr-nonlinear parametric oscillators (KPOs) with local four-body interactions is a promising candidate for realizing an Ising machine with all-to-all spin couplings, based on adiabatic quantum computation… Click to show full abstract

A two-dimensional array of Kerr-nonlinear parametric oscillators (KPOs) with local four-body interactions is a promising candidate for realizing an Ising machine with all-to-all spin couplings, based on adiabatic quantum computation in the Lechner–Hauke–Zoller (LHZ) scheme. However, its performance has been evaluated only for a symmetric network of three KPOs, and thus it has been unclear whether such an Ising machine works in general cases with asymmetric networks. By numerically simulating an asymmetric network of more KPOs in the LHZ scheme, we find that the asymmetry in the four-body interactions causes inhomogeneity in photon numbers and hence degrades the performance. We then propose a method for reducing the inhomogeneity, where the discrepancies of the photon numbers are corrected by tuning the detunings of KPOs depending on their positions, without monitoring their states during adiabatic time evolution. Our simulation results show that the performance can be dramatically improved by this method. The proposed method, which is based on the understanding of the asymmetry, is expected to be useful for general networks of KPOs in the LHZ scheme and thus for their large-scale implementation.

Keywords: kerr nonlinear; body interactions; four body; ising machine

Journal Title: npj Quantum Information
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.