An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles… Click to show full abstract
An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of d-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of s-wave type from the nodeless gaps observed everywhere on the Fermi surface. Here we propose an orbital-selective pairing state, dubbed sτ3, as a natural explanation of these disparate properties. The pairing function, containing a matrix τ3 in the basis of 3d-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a d-wave-type sign change in the intraband pairing component, whereas the quasiparticle excitation is fully gapped on the FS due to an s-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.Unconventional superconductivity: Orbital selective pairing in iron selenidesOrbital-selective pairing could explain the unusual properties observed in the unconventional superconductor iron selenide. Conventional superconductivity arises when electrons form Cooper pairs due to electron-phonon coupling. In some materials, however, unconventional superconductivity can arise, which is driven by electron-electron rather than electron-phonon couplings. The detailed mechanism that facilitates electron pairing in unconventional systems remains elusive but iron selenide systems could help to provide insights as they exhibit both relatively high temperature superconductivity, and also strong electron correlations. With different experiments suggesting different pairing mechanisms, however, these systems are somewhat puzzling. An international team of researchers led by Qimiao Si from Rice University now theoretically demonstrate that an orbital-selective pairing state could explain this unusual behaviour, which may also be at play in other unconventional superconductors such as heavy fermion and organic systems.
               
Click one of the above tabs to view related content.