The origin of unconventional superconductivity and its relationship to a T = 0 K quantum critical point (QCP), which is hidden inside the dome of a superconducting state, have long been an outstanding… Click to show full abstract
The origin of unconventional superconductivity and its relationship to a T = 0 K quantum critical point (QCP), which is hidden inside the dome of a superconducting state, have long been an outstanding puzzle in strongly correlated superconductors. The observation and tuning of the hidden QCP, which is key to resolving the mystery, however, has been rarely reported. Here we report the controlling of a hidden QCP in the helical antiferromagnet CrAs and separation of the tuned QCP from the pressure-induced superconducting phase. The Al doping in CrAs increases the antiferromagnetic ordering temperature TN from 265 to 275 K, while it suppresses the QCP from 8 to 4.5 kbar. Pressure-induced superconductivity in the high-pressure regime is almost independent of Al doping, but superconductivity below 6 kbar is suppressed, revealing the clear separation between the tuned antiferromagnetic QCP and Tc maximum. These discoveries illustrate subtleties in the interplay between superconductivity and quantum criticality and warrant a deeper insight in understanding of unconventional superconductivity.
               
Click one of the above tabs to view related content.