LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dopamine D2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances

Photo from wikipedia

Antipsychotic drugs are widely prescribed medications, used for numerous psychiatric illnesses. However, antipsychotic drugs cause serious metabolic side effects that can lead to substantial weight gain and increased risk for… Click to show full abstract

Antipsychotic drugs are widely prescribed medications, used for numerous psychiatric illnesses. However, antipsychotic drugs cause serious metabolic side effects that can lead to substantial weight gain and increased risk for type 2 diabetes. While individual drugs differ, all antipsychotic drugs may cause these important side effects to varying degrees. Given that the single unifying property shared by these medications is blockade of dopamine D2 and D3 receptors, these receptors likely play a role in antipsychotic drug-induced metabolic side effects. Dopamine D2 and dopamine D3 receptors are expressed in brain regions critical for metabolic regulation and appetite. Surprisingly, these receptors are also expressed peripherally in insulin-secreting pancreatic beta cells. By inhibiting glucose-stimulated insulin secretion, dopamine D2 and dopamine D3 receptors are important mediators of pancreatic insulin release. Crucially, antipsychotic drugs disrupt this peripheral metabolic regulatory mechanism. At the same time, disruptions to circadian timing have been increasingly recognized as a risk factor for metabolic disturbance. Reciprocal dopamine and circadian signaling is important for the timing of appetitive/feeding behaviors and insulin release, thereby coordinating cell metabolism with caloric intake. In particular, circadian regulation of dopamine D2 receptor/dopamine D3 receptor signaling may play a critical role in metabolism. Therefore, we propose that antipsychotic drugs’ blockade of dopamine D2 receptor and dopamine D3 receptors in pancreatic beta cells, hypothalamus, and striatum disrupts the cellular timing mechanisms that regulate metabolism. Ultimately, understanding the relationships between the dopamine system and circadian clocks may yield critical new biological insights into mechanisms of antipsychotic drug action, which can then be applied into clinical practice.

Keywords: antipsychotic drug; dopamine receptors; drug induced; dopamine; antipsychotic drugs

Journal Title: NPJ Schizophrenia
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.