The massive evolved Wolf–Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds1. These structures are known… Click to show full abstract
The massive evolved Wolf–Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds1. These structures are known to encode the parameters of the binary orbit and winds2–4. Here we report observations of a previously undiscovered Wolf–Rayet system, 2XMM J160050.7–514245, with a spectroscopically determined wind speed of ~3,400 km s−1. In the thermal infrared, the system is adorned with a prominent ~12″ spiral dust plume, revealed by proper motion studies to be expanding at only ~570 km s−1. As the dust and gas appear to be coeval, these observations are inconsistent with existing models of the dynamics of such colliding-wind systems5–7. We propose that this contradiction can be resolved if the system is capable of launching extremely anisotropic winds. Near-critical stellar rotation is known to drive such winds8,9, suggesting that this Wolf–Rayet system may be a Galactic progenitor system for long-duration gamma-ray bursts.A serpentine plume of dust around a Wolf–Rayet binary indicates the presence of an anisotropic colliding-wind system in which one of the components is likely to be rapidly rotating. Spun-up Wolf–Rayet stars are thought to be long gamma-ray burst sources.
               
Click one of the above tabs to view related content.