LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interstellar detection of the highly polar five-membered ring cyanocyclopentadiene

Photo by siora18 from unsplash

Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory… Click to show full abstract

Much like six-membered rings, five-membered rings are ubiquitous in organic chemistry, frequently serving as the building blocks for larger molecules, including many of biochemical importance. From a combination of laboratory rotational spectroscopy and a sensitive spectral line survey in the radio band toward the starless cloud core TMC-1, we report the astronomical detection of 1-cyano-1,3-cyclopentadiene (1-cyano-CPD, c-C 5 H 5 CN), a highly polar, cyano derivative of cyclopentadiene. The derived abundance of 1-cyano-CPD is far greater than predicted from astrochemical models that well reproduce the abundance of many carbon chains. This finding implies that either an important production mechanism or a large reservoir of aromatic material may need to be considered. The apparent absence of its closely related isomer, 2-cyano-1,3-cyclopentadiene, may arise from that isomer’s lower stability or may be indicative of a more selective pathway for formation of the 1-cyano isomer, perhaps one starting from acyclic precursors. The absence of N-heterocycles such as pyrrole and pyridine is discussed in light of the astronomical finding of 1-cyano-CPD. A five-membered carbon ring molecule, cyanocyclopentadiene, has been detected in a molecular cloud at a higher abundance than expected. This result from the GOTHAM survey indicates a rich aromatic chemistry in molecular clouds that is not fully understood theoretically.

Keywords: cyanocyclopentadiene; highly polar; five membered; chemistry; cyano; detection

Journal Title: Nature Astronomy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.