LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair

Photo from wikipedia

Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR associated protein 9 (Cas9)-based therapeutics, especially those that can correct gene mutations via homology-directed repair, have the potential to revolutionize the treatment of… Click to show full abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR associated protein 9 (Cas9)-based therapeutics, especially those that can correct gene mutations via homology-directed repair, have the potential to revolutionize the treatment of genetic diseases. However, it is challenging to develop homology-directed repair-based therapeutics because they require the simultaneous in vivo delivery of Cas9 protein, guide RNA and donor DNA. Here, we demonstrate that a delivery vehicle composed of gold nanoparticles conjugated to DNA and complexed with cationic endosomal disruptive polymers can deliver Cas9 ribonucleoprotein and donor DNA into a wide variety of cell types and efficiently correct the DNA mutation that causes Duchenne muscular dystrophy in mice via local injection, with minimal off-target DNA damage.Gold nanoparticles carrying Cas9 ribonucleoprotein and donor DNA, and complexed with endosomal disruptive polymers, correct the DNA mutation that causes Duchenne muscular dystrophy in mice, with minimal off-target effects.

Keywords: donor dna; cas9 ribonucleoprotein; homology directed; dna

Journal Title: Nature biomedical engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.