LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction

Photo from wikipedia

A robust nanopillar platform with increased spatial resolution reveals that perinuclear forces, originating from stress fibres spanning the nucleus of fibroblasts, are significantly higher on these nanostructured substrates than the… Click to show full abstract

A robust nanopillar platform with increased spatial resolution reveals that perinuclear forces, originating from stress fibres spanning the nucleus of fibroblasts, are significantly higher on these nanostructured substrates than the forces acting on peripheral adhesions. Many perinuclear adhesions embrace several nanopillars at once, pulling them into β1-integrin- and zyxin-rich clusters, which are able to translocate in the direction of cell motion without losing their tensile strength. The high perinuclear forces are greatly reduced upon inhibition of cell contractility or actin polymerization and disruption of the actin cap by KASH dominant-negative mutant expression. LMNA null fibroblasts have higher peripheral versus perinuclear forces, impaired perinuclear β1-integrin recruitment, as well as YAP nuclear translocation, functional alterations that can be rescued by lamin A expression. These highly tensed actin-cap fibres are required for YAP nuclear signalling and thus play far more important roles in sensing nanotopographies and mechanochemical signal conversion than previously thought.Using nanopillars with increased spatial resolution, Shiu et al. identify high perinuclear forces that originate from contractile apical actin filaments that span across the nucleus and are dependent on lamin A and the LINC complex.

Keywords: force measurements; measurements reveal; nanopillar force; actin cap; perinuclear forces; cap

Journal Title: Nature Cell Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.